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ABSTRACT

Let Mn denote the bivariate box-spline corresponding to the directions

*(1,0), (0,1) (1,1), each occurring with multiplicity n. We determine all

critical paints of the polynomials
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SIGNIFICANCE AND EXPLANATION

This is a further report in a series devoted to the study of box

asplines. Box splines have-been-Iritroduced in MPC TSR #2320 and' provide a

natural generalization of univariate cardinal splines, i.e., splines with a

uniform knot sequence.

-The process of univariate spline interpolation becomes particularly

simple in the cardinal case, and this report considers the corresponding

bivariate process of interpolation at the integer points in the plane to a

given function by a linear combination of integer translates of a box

spline. In particular, the report shows that this process is well posed,

i.e., any bounded continuous function r has exactly one such bounded

interpolant If. The argument uses the Fourier transform to identify a

certain trigonometric polynomial (in two variables) whose nonvanishing is

equivalent to the asserted well-posedness. The minimum value of this

polynomial yields a bound on the norm of the resulting interpolation

projector I.,
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SOME QUALITATIVE PROPERTIES OF BIVARIATE
EULER-FROBENIUS POLYNOMIALS

Carl de Boor1  Klaus Ho;llig' and Sherman Riemenschneider3

In a series of beautiful papers, I. J. Schoenberg developed the

theory of univariate cardinal splines [6-81. A basic result is the

positivity of the Euler-Frobenius polynomials which implies the well

posedness of cardinal interpolation.

Theorem 1 (61. Let M r denote the univariate cardinal B-spline with

* support centered at 0. The Euler-Frobenit!.s polynomials

Px W . H (i)eiJx r Z
r r +

Czp

are strictly positive and attain their unique minimum (maximum) at

x x mod 2w Z (x 0 mod 2w Z)

In this note we obtain the bivariate analogue of this result for

box-splines. For a wet of vectors w ith E 13 the

*box-spline M- is the functional on C (Rm) defined by (11

n

Equivalently, H- can be defined by its Fourier transform

(2) n

(2)~ MU 1 S(Oy)
V-1

0 4 Sponsored by the United States Army under Contract No. DAAG29-8O-C-0041.
2Supported by the National Science Foundation under Grant No. DMS-8351187.
3Supported by NSERC Canada through Grant#A 7687.
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where S(z) : (2/z) sin(z/2). The latter definition stresses the

similarity to the univariate case. We define the multivariate Euler-

Frobenius polynomials by

(3) PC.(x) : J M.(J)e iJA.

-

m.

In the bivariate case (m = 2) we proved [31 the following conjecture.

The polynomials P. are strictly positive iff the box-splines M,(. ) - ,

J Z are linearly independent.

If valid in general (m > 2) the conjecture would imply that cardinal

interpolation is well posed if the obvious necessary condition of linear

independence is satisfied. For two variables it was shown in [2) that the

box-splines are linearly independent only on the "standard" three

direction mesh, up to symmetry the vectors in - have to be chosen from

the set 1(,0), (0,1), (1,1)}. While the corresponding grid is very

regular, the analysis of the interpolation problem is complicated. Our

*. results [3,41 are not as complete as in 1. J. Schoenberg's univariate

theory. E.g. we were not able to determine the location of the minimum

for P_ which in general depends on 2. We conjectured that in the S

.. symmetric case, when each of the three vectors in 2 occurs with

multiplicity n, the polynomial Pn - P. attains its minimum at the point

nS
(2w 2w.
* ~ T-,T In this note we prove this conjecture and determine all critical

points of Pn

.... .- - ooo=.. -... - .... .- .......... . . ... .. . . " .°' :
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Theorem 2. The polynomials P., n c Z+, attain their minima at

2v 2v-

-- ,f) mod 2w , their maxima at the points 2w Z and have saddle

2 2.
pointsat w Zo\,2w Z These are the only critical points of P.0

Figure I below showrs the gradient field of P3 on [12,3R/2) x [-it,w)

II

[ which illustrates the general situation. .
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The proof of Theorem 2 relies heavily on the symmetries of P Let

A denote the group of 12 linear transformations which leave the mesh

generated by the three directions (1,0), (0,1), (1,1) invariant. This

group is generated by the matrices

* 0

(4) 1 0 01 1 0i K 1

-I,1-1 0 1 -1 0 1" "

which correspond to reflection at the origin and permutation of the

directions. The syosetric box-spline Mn is invariant under composition

with A, i.e.

(5) M(Ax) M(x), A c A.
n n

Therefore, the corresponding Euler-Frobenius polynomials satisfy

(6) P (AWx + 2wJ) =(Pn(x), A e A, Z2 ,

where A* denotes the transpose of A. These relations give much 0

information about the structure of P . Denote by Vf(u,v) :.

(Duf(u,v), Dvf(u,v)) the gradient of a function f. Differentiating the

identity (6) we obtain

(7) (VPn(Ax + 2wj)) A* = Vn(X), A c j c z

... e- .--.. ,. . . . . . -.** . . . . . . *,,..
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Let I denote the unit matrixc. Identity (7) implies in particular that

Id(8) VP n W E ker(I -A) if (I- A*)x -2wJ.

UFor A le 3,]A it follows from (8) that VP0

2(2w 2ir)
vanishes at the points I Z and + 21 respectively. For

A[ eJ K1A 'K ] O~ ' A, the

matrices (I -A) have rank one and it follows from (8) that for k e Z

(0,I)VP() W ) if (1,2)x -2wk,

an
(1,O)VP(x W 0 if (2,1)x -29k,

(1,-1)VP n(x) -0 if (1,-1)x 2wk,

(9)

(1j1)VP(X W 0 if (1,I)x -2 rk,
In

(2,-1)VP(x W 0 if (1,0)x U2lnk,

(1,-2)VP~x W 0 if (0,iOx -2irk.

~n



The remaining 4 matrices in A give no further information.

Let Q denote the (closed) triangle with vertices (0,0), (w,O),

I 21T22w Th, -, -). The set ii-- i

*- U AQ,
A

which is the convex hull of the six points -2w,-L, w 4T 2 -42"

is a fundamental domain, i.e. its translates form an essentially disjoint 0

2partition of 3R. Therefore, to complete the proof of Theorem 2, it is

sufficient to show that

(10) VP(x) $ 0 for x iC \ {(0,0), (n,0), (1-2w42L)

and that ....

_ 27 211,.. ...
(n) 2n - - < Pn(,O) < Pn(0,0)-

To this end we prove the following estimates:

(i) Du P n(U,v) / (2u + v) < 0 for (u,v) c :Si  {(uv):

3w0 < v < u,2u + v < u > 0},

(ii) DPn(u,v) / (2 - 2u- v) < 0 for (u,v) E l2 : j(u,v):

3w_ .T~ 2u + v < 2w, 0 < v, u + 2v < 2w},

(iii) D Pn(u,v) / v < 0 for (u,v) e : j(u,v): 0 < v 2w - 2u <

['...." ..-.. '.'" ".-.'....-. ..'...-......'. ....'...............................................................................-..•....-..-....-........-.... • .
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(2Tr/3, 2Tr/3)

(5Ir/6, 1T/3)

IL 32

(0,0) (T,0)

< Figure 2 >

Note that, since P (u'v) P F(v,u), it follows from (1i) that

D vP n(w-v/2, v) (w (r3v/2) < 0, vr/3 < v(<2/3.

For small a the inequalities (1) - (iii) can be verified

numerically and we shall assume in the sequel that n is sufficiently

large (a > 5). Using the Poisson summation formula and (2), w.e write Pn

in the form

(12) p n(u'v)u SukaSv )5 Suvk-)
(k,.L)CA

L



where A :2w1 Z For (u,v) e W and large n, the terms with Iki + III
small dominate in the expression for P~ n This fact is crucial for the

subsequent estimates.

Proof of Mi. We write 0

(13) D uP n(u,v) -n ak a.lb k
(k, it)CA

with

ak :nS(u +k)rl S(v + L)n S(u +v +k + On-

(14)

bk £ S'(u + k) S(u + v + k + X.) + S(u + k) S'(u -'.+ k + 9.).

Using the inequalities

(15) Is SwIIIS'(w)I min (1,2/JIwj).

for (u,v) e il, we obtain the estimates

bo'O -2 (2 + v)

0,0-.>-.. ..
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boo <--u S(()-L(u+v) I <-L (2u+v),
161b - 6ff

(16)

Ibk ,i 4. 8T sin(u/2) sin((u+v)/2)

0,0 u+1~~ 2u +v + 2u + v

16t

For (u,v) e Q and (k,L) * (0,0), we have S

Sv < f-2.

Combining this inequality with (16), we see from the definition of ak,£.

and S that

D P (u,v) ak

na0 0 b0 , 0  A\(0,0) a,0 0,0

L6 311/4 in-li '/2 in-i1 "1 in-i

The last right-hand-side is less than I for n > 5. Therefore,

inequality (i) follows from the second inequality in (16) and the fact

that a0 , 0 is positive on
000

S. .. ..- ".. . . . . . . .

.. . . . . . . . . . . . .... . .. . . . . . . . . . . . . . . . ..-. . . . . . . . . . . . . . . . . . . . . . . . ..". . ..!: :: : ' : . - . : . .. : .: . .-:.. -. .-
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Proof of (ii). In expression (13) for D P we split the index set Au n

into the three parts

A :- (k, 1): 2k + X + 2w! 0
0

A+ {(k,X): ±(2k + X. + 2W) > 01.

The sets A+ and A- are related by the bijective mapping

(k, 0 c A4 <- k'9' (-k I . 27r,X) c A-.

Therefore, we can write D P in the form

(17) D P (u,v) n~ Ak.bk. + tk

where (c.f. (14))

ak- 2 ! t.
b =L b k t+-'- b-kX2 X

k,9. aki kL-t9

(S'(u+k)S(u+v+k+l) + S(u+k)S'(u-v+k+lj1

+ n [S'(u-k-X27r)S(u+k-2w) + s(u-k-X-2ir)S'(u+v-k-2w)J

* with



S u + k u~v+k+t

u-k- 9-21 wuv-k-2

0

observe that for (u,v) e Q and (k,I) eA+.

(18) 0 < and 1- 2w-v-2u 2k+ Z+2w 0
u-k- t-21r u+v-k-21

Since the numerator in 1 - C is positive, letting A*;-n {(k,X) 4 ..:

(k+jt+w)(k+w) > 01, we have

O < 4 < 1, (k,I) A*

0 < 1Ar < 1, (k, 1) £A+\ A*

Using the identity

(20) S(P)S'(q) ±S'(P)S(q) -L sin -4(pq) sin sin,
pq 2 p2 q2

we can simplify the above expressions for b ktand b kXand obtain

(21) b -2 sin(u+v/2-lr)-
(2) bk, I (u+k)(u+v+k+t)

_________ zv~+(---21 sin -sin ,(k,) £A 0 ,

(u~k 2 (~v~+X) 2
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(22) b 2(-1)t sin(u+v/2)( + ef) -4(-1)* sin(u/2)sin((u+v)/2)
k, 7uk)uY Ckt) (u~,k) 2 (u+v+k+Z)2  -

n+1
x [(2u+v+2k+t)+C (2u+v-2k--4r)], (kil) cA*.

In the term in square brackets we add and subtract (2u + v- 2k I

4wr). Then a direct computation using (18) yields

(23) ~ (2u + v - 2wr)(2 + (u-k-L2w)(uv--2kw) 'io

Analogous to case (i) we show that a b is the dominant term
0,0 0,0

*for the right hand side of (17). Indeed,

*(24) bo' -.6 2w- for n >5,
0,0 - U~a-V)T

as one checks numerically for n 5, and therefore has it for n > 5,

since b' decreases as n increases as we see from (19), (22) and

(23). For (u,v) c il 2 we have w/3 ( u, u4-v < 4w/3 and we obtain from

* (19)-(24) the estimates

(25) [ ."J. lul ~ 1,j (k,£) £A 0,
0,0k u~~k

I 0

to0
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(26) j1 (k,k) £ A,.--. 6 j u+ v+k+ I '_

boo

For (k,L) £ A+\ A, we estimate -nbk P in a similar way and obtain

.0

(b -I n 34n+l)(2k+a.+2') 'u' aulv.

(27) <*~~~ C 6 I u+v+ki+11 (k, 1) c A+\ A*
bo'o .6•~

For (kI) (0,-2w) we obtain the sharper estimate

(2 )u+v - 2.

bo,"

,= p ,

numerically for n - 5, hence valid for n > 5 since b0 ,0  Increases

with n. p

Similarly as for case (i), it follows from (17), (25)-(28), the

definition of C, and the inequality

(v/(2, - v))n((u + v)/(21 - u - v))n < 1, (u,v) i2,

that 
I

*4 * . .",: .-- . .. . . . . . . . .,
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0

. DuP(u,v)

, . ,0 (00 ) 6 n1___-___ 14 3k t + t+--)-.

iDu n

.6 A roio) I7 1 14/3+kI

II

.6+ 1/6--+1 42w-73 (2k++X)

A*\ (0 , 0o

The right-hand side is less than 1 for n > 5 and the inequality (ii)

follows from (24) and the fact that a is positive.
0,0

.. Proof of (iii). We have

(29) DvPn( - v/2, v) " n a.,,
A

with

n-1 n-i)-a', : S(w - v/2 + k) S(v + 1) nS(w + v/2 + k +

b,:- S(w - v/2 + k)S'(v + )S(O + v/2 + k + X) +

S(O - v/2 + k)S(v + t)S'(, + v/2 + k + t).

. . . . . . . . .. . . . . . . . . . . . . . . .. "

.° . . . . . . . . . . -

- e o ° . . . .o, . . . . . .
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Note that a00 a2w, 0 . o it can be verified numerically that

sup (b' + b' )/v > I.'

(30) C 0<v</3

To estimate the remaining terms in (29) we observe from the 
definition of •

s and (15) that

bl in2 m ti, IS7cr~ i-

Therefore, 
0

I  NSn Iw/3 n 7/6 in

S.2 Ivw+kl 1 1ri i J7w/6+k+,I S_,

and we obtain

DPn (w-v/2'v) bw i w/3 In 71/6 in.'- -

nao,0 (boo+b -2w,O < 72 A 0(oo),(-2,o) 
1 I 3-'1 7w/6+k+l:

S

The right-hand side is less than I for n > 2 which, together with

(30), implies the inequality (i1).

.. .'

.. .. *--*.
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